Hand-grip strength is widely used to estimate muscle strength and it serves as a general indicator of the overall health of a person, particularly in aging adults. Hand-grip strength is typically estimated using dynamometers or specialized force resistant pressure sensors embedded onto objects. Both of these solutions require the user to interact with a dedicated measurement device which unnecessarily restricts the contexts where estimates are acquired. We contribute HIPPO, a novel non-intrusive and opportunistic method for estimating hand-grip strength from everyday interactions with objects. HIPPO re-purposes light sensors available in wearables (e.g., rings or gloves) to capture changes in light reflectivity when people interact with objects. This allows HIPPO to non-intrusively piggyback everyday interactions for health information without affecting the user’s everyday routines. We present two prototypes integrating HIPPO, an early smart glove proof-of-concept, and a further optimized solution that uses sensors integrated onto a ring. We validate HIPPO through extensive experiments and compare HIPPO against three baselines, including a clinical dynamometer. Our results show that HIPPO operates robustly across a wide range of everyday objects, and participants. The force strength estimates correlate with estimates produced by pressure-based devices, and can also determine the correct hand grip strength category with up to 86% accuracy. Our findings also suggest that users prefer our approach to existing solutions as HIPPO blends the estimation with everyday interactions.