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Abstract

Pervasive Data Science (PDS) is an emerging paradigm that combines the
Internet of Things, Pervasive Computing, and Data Science to address
everyday challenges. PDS differs from traditional data science in that it
harnesses data from pervasive computing deployments, which affects the way
data is produced and how it can be analyzed. To date, PDS has received
limited attention as an independent research domain as the research field
is fragmented and scattered among many different subfields. This is due
to a limited understanding of the characteristics and challenges in PDS,
and a lack of end-user applications that demonstrate the benefits of PDS.
This thesis paves the way for improving the adoption of PDS by offering
(i) insights into the processes that produce data, (ii) demonstrating how
pervasive computing deployments can enable wide-range of applications by
re-purposing existing sensors and capabilities of pervasive computing devices,
and (iii) highlighting the potential benefits of Pervasive Data Science by
developing end-user applications for tackling sustainable development.

Computing Reviews (2012) Categories and Subject
Descriptors:
Human-centered computing → Ubiquitous and mobile computing
Computing methodologies → Machine learning
General and reference → Cross-computing tools and techniques
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General Terms:
pervasive data science, internet of things, pervasive computing, data science
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collection, crowdsensing, multi-device collaborative sensing and computing,
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waste, deep learning
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En primer lugar, me gustaŕıa expresar mi más sincero agradecimiento a mi
director de tesis, Profesor Petteri Nurmi. Su inestimable mentoŕıa desde
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Chapter 1

Introduction

Pervasive Data Science (PDS) has emerged as a powerful paradigm that
harnesses the potential of data to uncover new insights and drive innova-
tion [20, 59]. PDS builds on three research fields, Internet of Things (IoT),
Pervasive Computing and Data Science, and on an exponential increase
in the number of smart devices connected to the Internet. The number of
smart devices are projected to almost double from 15.14 billion in 2023 to
more than 29.42 billion in 2030 ($5.5 - $12.5 trillion in value)[50, 61]. This
has been accompanied by a significant increase in academic studies in these
fields, as highlighted in Figure 1.1 and several reports [44, 61]. Leveraging
these advances, Pervasive Data Science has gained a significant momentum
in recent years, empowering research in areas such as environmental moni-
toring [1, 72], healthcare [3, 25, 81], smart cities [16, 18, 30, 86] and precise
agriculture [91, 93, 105].

Pervasive Data Science draws on the use of data from IoT and pervasive
computing deployments for data science. For example, PDS applications
for monitoring air quality [16, 18, 24] use IoT and pervasive computing
technologies to deploy a distributed network of smart devices that peri-
odically collect samples of multiple air compounds at different locations,
and data science techniques to define the sampling process and transform
the data into insights about spatio-temporal patterns of air quality. The
structure of Pervasive Data Science systems is two-fold: (i) the system
architecture and (ii) the sensing pipeline. The former specifies the overall
composition of devices and data processing, comprising four functional
layers: sensing, networking, data management, and privacy and security,
while the latter specifies the algorithms and methods for gaining insight
from sensor measurements, comprising four stages: data collection, cleaning
and pre-processing, feature extraction, and modelling and evaluation.

1
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Figure 1.1: Research interest in topics related to pervasive computing,
pervasive technologies, Internet of Things, data science and smart devices,
and comparison with the number of connected smart devices globally since
2011. (a–c) Number of results corresponds to the search output in Google
Scholar. (c) Number of connected smart devices retrieved from [44, 64].

Despite offering an integrated design that promises the acquisition of
richer data and a deeper understanding of it, Pervasive Data Science has
yet to gain as widespread recognition as the paradigms it builds on [20,
21]. In fact, there has been limited progress in the field of Pervasive
Data Science, with only 69 studies explicitly focusing on this specific term,
highlighting how the research field is scattered. This is due to a limited
understanding of the characteristics and challenges in PDS, and a lack of
end-user applications that demonstrate the benefits of PDS. This thesis
paves the way for improving the adoption of PDS by offering (i) insights into
the processes that produce data, (ii) demonstrating how pervasive computing
deployments can enable wide-range of applications by re-purposing existing
sensors and capabilities of pervasive computing devices, and (iii) highlighting
the potential benefits of PDS by developing end-user applications for tackling
sustainable development.
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1.1 List of contributions

The core contributions of this thesis are solutions that address key challenges
in pervasive data science: how to improve the quality of available data
and how to enable new and better ways to collect data. The thesis also
demonstrates the benefits of the contributions through novel applications
addressing sustainable development in different environments. The core
contributions are:

1. Enhancing data quality: data analysis and multi-device collabo-
ration: The complexity of Pervasive Data Science applications stems
from the many factors that affect data collection, such as different users,
devices, environments or contexts. This complexity and the variety of
factors impacting data quality result in challenges related to the limited
usability of PDS applications and the quality of the data that is avail-
able. This thesis provides solutions to address these limitations, and to
improve data quality. In Publication I we demonstrate the potential
benefits of data fusion to generate an understanding of complex interac-
tions, and provide ways to handle limitations with large-scale datasets.
We rely on mobile computing data to provide a method for quantify-
ing the relationship between energy consumption, network latency and
application retention, highlighting the trade-off between data size and
quality. Publications II and III address the challenges of efficient
data collection in large-scale, multi-device collaborative environments
to improve data collection and quality. Publications II introduces
a novel regularity-based method for selecting long-term collaborators,
and Publication III demonstrates how spatio-temporal characteristics
of mobility in different locations affect collaboration opportunities in
everyday contexts.

2. Enabling novel pervasive data science applications through low-
cost sensing: Pervasive computing has the potential to expand further
into new domains that benefit the society. In real-world deployments, key
challenges include developing affordable and reliable solutions and guide-
lines on how to configure sensors. We demonstrate the potential and the
benefits of low-cost sensing technologies and the importance of evaluating
performance trade-offs to enable pervasive data science applications. We
demonstrate how pervasive data science applications can be used for
low-cost end-to-end monitoring of indoor environments. Publication IV
shows how CO2 accumulation, occupancy and face mask usage can be
estimated from air conditioning measurements collected by a prototype
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smart plant container that integrates low-cost commercial environmental
sensors. Publication V demonstrates the importance of sensor configu-
ration and the cost benefit of using low-cost sensors by evaluating the
performance trade-offs and costs of using low-resolution thermal array
sensors for occupancy detection and counting, and providing guidelines
for sensor configuration. Publication VI demonstrates how PDS and
low-cost sensing can be used to provide new insights and support existing
applications. We introduce a novel privacy-preserving method for indoor
environments that can accurately detect covert surveillance devices using
thermal imaging, and that can complement existing approaches.

3. Supporting end-user applications for sustainable development:
Adopting a new paradigm requires demonstrating its potential benefits
to society. We demonstrate the societal benefits that Pervasive Data
Science can bring by addressing environmental sustainability challenges
and supporting sustainable development. We also present the challenges
and roadmap to be followed to implement these applications in real life.
Publication VII contributes with a novel low-cost sensing method to
reduce food loss and waste that can characterise the quality of produce
using contact-based reflective green-light sensing and can be used at all
stages of the supply chain. Publications VIII and IX present a vision for
multi-ecosystem pollution monitoring using PDS integrated onto smart
devices. Publication VIII focuses on city-scale air quality monitoring
using unmanned aerial vehicles (UAVs), demonstrating that UAV-based
pollution monitoring complements ground measurements by providing
information on the vertical distribution and potential dispersion mecha-
nisms of pollutants. Publication IX presents how large-scale pollution
monitoring can be achieved by using coordinated groups of autonomous
underwater vehicles (AUVs) equipped with low-cost sensors. Publica-
tion X contributes by showing how the reorientation and adoption of
the technology requires overcoming the challenges inherent in its imple-
mentation. We analyse the performance of deep learning in underwater
environments, and present the roadmap for using these models in aquatic
environments.

1.2 Individual Contributions to Original Publica-
tions

In the following, we detail the individual role and contribution of the current
author to the original publications that form part of this thesis.
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1.2.1 Insights and Methods for Data Collection

Publication I: Tortoise or Hare? Quantifying the Effects of Per-
formance on Mobile App Retention

The original idea of quantifying the effect of performance on mobile app re-
tention and using data fusion to evaluate the combined effect was originated
with the current author under the supervision of Eemil Lagerspetz, Huber
Flores and Petteri Nurmi. Data fusion and analysis was performed by the
current author with feedback from Eemil Lagerspetz, Huber Flores and
Petteri Nurmi. Modelling was done by the current author in collaboration
with Huber Flores. The first draft of the manuscript was prepared by
the current author, while the subsequent writing was a collaborative effort
involving all co-authors.

Publication II: COSINE: Collaborator selector for cooperative
multi-device sensing and computing

The concept of evaluating different approaches to selecting collaborators in
multi-device environments originated with the current author, Huber Flores
and Petteri Nurmi. The dataset preparation and experimental evaluation
was a joint effort between the current author and Huber Flores. The first
draft of the manuscript was prepared by the current author and Huber
Flores. The subsequent writing was a collaborative effort involving all
co-authors.

Publication III: Collaboration Stability: Quantifying the Success
and Failure of Opportunistic Collaboration

The innovative approach of evaluating different methods for selecting collab-
orators in multi-device environments was jointly conceived by the current
author, Huber Flores and Petteri Nurmi. Dataset preparation, stability
analysis, quantification and modelling were performed by the current author
and Huber Flores, with feedback from Petteri Nurmi. The first draft of the
manuscript was prepared the current author and Huber Flores, while the
subsequent writing was a collaborative effort involving all co-authors.

1.2.2 Low-Cost PDS Systems for Indoor Monitoring

Publication IV: Smart Plants: Low-Cost Solution for Monitoring
Indoor Environments

The vision of instrumenting plant containers to monitor indoor environ-
ments originated from the current author under the supervision of Petteri
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Nurmi. The experiments, analysis and modelling were conducted by the
present author, with feedback from Huber Flores and Petteri Nurmi. The
initial draft of the manuscript was prepared by the current author, while
the preparation of the final version was a collaborative effort of all co-authors.

Publication V: How low can you go? performance trade-offs in low-
resolution thermal sensors for occupancy detection: A systematic
evaluation

The origin of the idea to evaluate the trade-offs in low resolution thermal
sensors was Mikko Rinta-Homi and Petteri Nurmi. The methodology design,
analysis, and evaluation were done by the current author and Mikko Rinta-
Homi and under the supervision of Naser Hossein Motlagh and Petteri
Nurmi. The first draft of the manuscript was produced by the current
author and Mikko Rinta-Homi. The subsequent writing was a joint effort of
all co-authors.

Publication VI: See No Evil: Discovering Covert Surveillance
Devices Using Thermal Imaging

The novel concept of using thermal imaging to detect covert surveillance
devices was conceived by the current author under the supervision of Petteri
Nurmi. The experiments, analysis and modelling were carried out by the
current author with feedback from Huber Flores and Petteri Nurmi. The
first draft of the manuscript was prepared by the current author, while the
subsequent writing was a collaborative effort involving all co-authors.

1.2.3 Pervasive Data Science for Sustainable Development

Publication VII: Ripe or Rotten? Low-Cost Produce Quality
Estimation Using Reflective Green Light Sensing

The original idea of using green-light sensing to estimate produce quality
came from the current author under the supervision of Huber Flores and
Petteri Nurmi. The experiments were performed, evaluated and modelled
by the current author with feedback from Huber Flores and Petteri Nurmi.
The first draft of the manuscript was prepared by the current author. The
preparation of the final version was a collaborative effort of all co-authors.

Publication VIII: Toward Blue Skies: City-Scale Air Pollution
Monitoring using UAVs

The idea of using low-cost sensors and UAVs for air pollution monitoring
originated from the present author, Aeromon Oy and Naser Hossein Motlagh
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under the supervision of Petteri Nurmi and Sasu Tarkoma. The analysis and
modelling were carried out by the present author with feedback from Petteri
Nurmi. The first draft of the manuscript was prepared by the current au-
thor and Hossein Motlagh. The final version is a joint effort of all co-authors.

Publication IX: Toward large-scale autonomous marine pollution
monitoring
The vision of using AUVs for marine pollution monitoring originated with
the current author, Naser Hossein Motlagh, Huber Flores and Petteri Nurmi.
Data collection, analysis and modelling were performed by the current au-
thor and Huber Flores with feedback from Petteri Nurmi. The first draft of
the manuscript was prepared by the current author, Naser Hossein Motlagh
and Huber Flores, while the final version was a collaboration of all co-authors.

Publication X: Deep Learning and the Oceans
The idea of evaluating the performance of deep learning underwater started
with the current author and Marko Radeta under the supervision of Hu-
ber Flores and Petteri Nurmi. The field experiments were carried out in
coordination with the current author and Marko Radeta. The analysis
and evaluation were performed by the current author and Marko Radeta,
with feedback from Huber Flores and Petteri Nurmi. The first draft of the
manuscript was prepared by the current author and Marko Radeta, while
the subsequent writing was a collaborative effort involving all co-authors.

1.3 Structure of the Thesis

This thesis is divided into four parts. Chapter 2 describes the contributions
of Publications I, II and III on how to improve the quality of data and
collaboration in large-scale contexts. Chapter 3 presents the results of
Publications IV, V and VI on the use of low-cost sensors in novel applications
and the evaluation of performance trade-offs. Chapter 4 introduces the
findings of Publications VII, VIII, IX and X on the potential of PDS to
support sustainable development. Chapter 5 summarises the contributions
of this thesis and the future work, followed by reprints of the original
publications.



8 1 Introduction



Chapter 2

Insights and Methods for Data
Collection

Pervasive Data Science harnesses data from diverse smart devices that
are carried around by users, integrated into the infrastructure, or operate
autonomously. The data that is available for analysis depends on the
interplay of these devices, which makes it essential to understand how the
available data is being generated and how the interactions between devices
affect it. In this chapter we focus on mobile crowdsensing, the opportunistic
collection of data from mobile devices, and provide insights on the processes
that generate data and provide methods for optimizing the availability of
measurements that can be used for data science investigations.

2.1 Retention and Data Quality

Today, there is an app for almost everything, with the major marketplaces
offering millions of apps to users [26]. However, over a quarter of installed
apps are only used once [47] and the rest are unlikely to remain relevant
for more than few weeks [97]. Despite the widespread awareness of low app
retention [9, 13], there is a lack of understanding regarding the threshold at
which negative user perceptions lead to app abandonment. As apps are the
main way to obtain data from smart devices, understanding the processes
that govern application use and abandonment is critical for understanding
how PDS deployments generate data.

Publication I first quantifies the relationship between mobile application
performance and retention, i.e. whether users are willing to continue using
an app. We perform our analysis by fusing two large-scale datasets: one
comprising of crowdsensed measurements of network latency (NetRadar [95])

9
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Figure 2.1: Comparison of latency and energy rate distributions between
Finland and Eastern USA. Previously published in Publication I [117].

and the other comprising of energy consumption and mobile app (Carat [77])
data. These are key components influencing user perceptions of apps [39,
49]. Our research shows that (i) latency and energy consumption have a
strong impact on app retention and abandonment across app categories,
and that (ii) the impact of performance varies depending on the level
of performance people are used to and the functionality and category of
the app. Our findings are supported by a performance-retention model,
demonstrating the predictive capability of our approach. In addition, we
demonstrate the power of data fusion to provide new insights that cannot
be obtained by analysing datasets individually. Studying app retention
improves the understanding of the relationship between user behaviour and
factors affecting performance have significant academic and commercial
interest. For instance, by exploring this relationship, we can gain deeper
insights into mobile interactions and their contextual influences [5, 8, 22, 79].
Additionally, marketers can benefit from understanding the key factors that
drive app success or failure [14, 31], while developers can use this knowledge
to improve their apps effectively [4, 85].

In the experiments, we focus on the locations with the highest amounts
of data: Finland and USA (EST - Eastern Standard Time). For the
NetRadar dataset, we focus on the samples collected during cellular network
connectivity as this allows to assess performance variations [23] and capture
a broad range of usage contexts and higher spectrum of mobility patterns.
As unit of analysis we consider network latency. The difference of the latency
distribution between the two locations (see Figure 2.1a) suggests differences
in network infrastructure, or mobile subscriptions, within the two locations.
For the Carat dataset, we restrict our analysis to samples collected from
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Table 2.1: Importance of performance on retention for top 5 categories (Cat) and
mobile applications (App). Darker colours reflect statistical significance (p ≤ 0.05).
C: Communications, P: Productivity, T: Tools, S: Social, M: Music, w: Whatsapp,
fm: Facebook Msg., fa: Facebook, d: Dropbox, t: Twitter. Table adapted from
the published Publication I [117].

Significance: Energy Significance: Latency Significance: Energy Significance: Latency

Location Cat. Day 1 Day 7 Day 15 Day 1 Day 7 Day 15 App. Day 1 Day 7 Day 15 Day 1 Day 7 Day 15

Finland C 0.028 0.005 0.006 0.003 0.685 0.921 w (C) 0.028 0.040 0.011 0.007 0.066 0.109
EST-USA 0.019 0.026 0.244 0.313 0.001 0.053 0.315 0.194 0.724 0.460 0.293 0.125

Finland P 0.654 0.600 0.378 0.033 0.001 0.002 fm (C) 0.027 0.107 0.007 0.203 0.638 0.381
EST-USA 0.263 0.636 0.756 3.0E-04 1.0E-04 0.584 0.050 0.017 0.011 0.186 0.096 0.158

Finland T 3.0E-04 0.001 1.0E-04 2.0E-04 1.0E-05 0.007 fa (S) 0.239 0.431 0.022 0.009 0.001 0.002
EST-USA 0.059 0.005 5.0E-04 0.499 0.029 0.016 0.013 0.004 0.009 0.035 0.050 0.010

Finland S 0.223 0.284 0.027 0.010 0.246 0.0669 d (P) 0.665 0.478 0.792 0.039 0.004 1.0E-04
EST-USA 2.0E-04 4.0E-05 0.003 0.0612 0.022 0.099 0.377 0.216 0.134 0.105 0.074 0.313

Finland M 0.004 0.050 0.304 0.803 0.288 5.0E-04 t (N) 0.089 0.040 0.147 0.231 0.065 0.232
EST-USA 0.027 0.389 0.908 0.244 0.007 0.013 0.471 0.033 0.077 0.030 0.041 0.198

Android devices due to their accessibility and high sampling granularity. As
unit of analysis we consider energy rate which correspond to the relative
change in battery in a given time interval [77]. The two locations show
similar energy consumption distributions (see Figure 2.1b), but differ in
terms of application usage patterns.

Data fusion is performed using a combination of timestamp and coarse-
grained location information, including Mobile Country Code (MCC), Mobile
Network Code (MNC), and GPS reverse geocoding. Since the datasets have
different sampling periods, we align the records by creating hourly bins
and mapping each sample in NetRadar and Carat to the closest bin. The
combined dataset comprises 243 applications, 1241 users, over 1 million
latency measurements and over 2.8 million energy measurements. Data
fusion validity is evaluated by comparing statistical characteristics between
combined and individual datasets, as well as sample distributions.

The main results of the study, as summarized in Publication I, include
(i) evaluating the effect of performance on retention, (ii) determining the
level of critical point in performance, (iii) assessing the difference in the
effect of performance, (iv) understanding the effects on highly-rated apps
and other factors, and (v) analysing the combined effect of Latency and
Energy. In the first case, we observe that performance certainly impacts
retention, but this relationship is influenced by application category and app
popularity. Different interaction patterns are observed across application
categories. Users exhibit varying levels of tolerance for poor performance
based on the application category and duration of use (see Table 2.1).

We identify critical points of performance where a decrease in perfor-
mance leads to lower retention. Improving performance beyond these points
has no impact on retention. The analysis of the critical point reveals that ap-
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Figure 2.2: Overall average retention difference for high and low groups
combining latency and energy ”critical point” thresholds. Previously pub-
lished in Publication I [117].

plication category, application characteristics, and location play a significant
role in determining these point. Latency and energy have varying effects on
retention depending on location, with differences potentially attributed to
network infrastructure and user preferences. In Figure 2.2, when compar-
ing the difference in critical points (CP) between energy and latency, we
observe that the effect of latency is perceived earlier, with energy becoming
significant at later percentages. Latency, being a short-term phenomenon,
is noticed faster by users and can also affect energy consumption, leading
to a faster decrease in retention. In Publication I we show that this trend is
more pronounced for individual apps compared to categories.

We extend our analysis to the top-rated apps, demonstrating that
latency has a greater impact on apps that heavily rely on online content
display, while energy variations are more influential for personalization apps.
Critical points, which indicate user tolerance, tend to align for apps with
similar functionalities. Our findings also demonstrate the robustness of
performance effects on user perceptions and retention across different factors.
Analysing energy data from a newer sample, we observed a consistent and
increased importance of energy on retention. We also examined low-energy
apps, confirming the direct impact of performance on user perceptions
and the persistent effect of energy. Finally, the cost-benefit analysis to
evaluate the combined effect of energy and latency on retention shows a
non-linear relationship between latency and energy, with neither variable
clearly dominating the other. Publication I also contributes by modelling
the degree to which performance affects retention, which is important to
estimate how users will respond to apps during their evolving life-span.
The results for individual factors show successful retention value prediction
values for Finland, but have slightly higher error rates in cross-country
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scenarios. Mixing data from Finland and EST-USA significantly improves
the model’s performance, with accurate predictions for all categories and
factors. Categories with similar usage patterns shows consistent results
across countries. Combined factor prediction leads to a significant reduction
in error compared to individual analysis.

Overall, Publication I motivates the need to explore more about mo-
bile interactions and how they are influenced by the context, specifically
studying collaborator selection and collaboration opportunities in large scale
environments. These topics are explored in Sections 2.2 and 2.3.

2.2 Collaborator Selection

Pervasive Data Science harnesses the pervasive availability of programmable
smart devices. This availability allows for collaborative computing scenar-
ios between multiple users or devices. Finding optimal and appropriate
collaborators is critical for the success of these scenarios as the costs of
finding and managing collaboration may otherwise offset the benefits they
bring [2, 45, 59]. The difficulty on finding collaborators arises from the
impact of human movement and the spatio-temporal context, which affects
the accessibility of devices for collaboration [6, 67].

Publication II presents COSINE, a novel approach for selecting collabo-
rators in multi-device computing scenarios. The challenges in collaboration
selection is to adapt selection to different types of collaborations or task
characteristics, and to account for individual variations in mobility. CO-
SINE overcomes these issues by using novel information theoretic measure
based on Markov trajectory entropy [26] to efficiently rank and recommend
collaborators. COSINE significantly improves the benefits of collaboration
by (i) increasing the expected duration of collaboration and (ii) reducing the
variability of collaborations. We focus on collaborative multi-device sensing
and computing as this is a critical part of PDS to create global platforms
that provide high quality services based on device interaction. Compared to
the existing research [54, 55, 63], our approach explores how to find the best
possible collaborators for the current context, rather than being limited
to analysing how to support collaboration. This allows maximising the
benefits and characteristics of collaboration based on the context where it
takes place. Indeed, recommending collaboration opportunities that have
the most predictable duration facilitates scheduling and allocation of tasks
across the available devices.

COSINE uses Markov trajectory entropy as measure of regularity. This
allows to overcome the limitations related to (i) incapability to adapt to



14 2 Insights and Methods for Data Collection

(a) (b) (c)

Figure 2.3: Phases of our COSINE for selection of collaborators finding
suitable collaborator devices. (a) Selection of collaborators, (b) Extraction
of regularity, (c) Quantization of measurements. Available devices and
collaboration duration. Figure previously published in Publication II [34].

varying mobility patterns; and (ii) incapability to account for different task
and collaboration characteristics. The overall approach for collaboration
selection consists of three phases, which are illustrated in Figure 2.3. The
first phase is signal quantisation where duration values for device encounters
are quantized into a finite set of states. This allows us to represent the signal
as a discrete trajectory and measure regularity through state transitions
(see Figure 2.3a). Quantization is performed using k-means clustering with
the desired number of quantization levels, given by the the number of
clusters k. In the second phase, regularity extraction (see Figure 2.3b), we
quantify encounter regularity using a Markov chain approach, creating a
transition probability matrix to measure the consistency of the encounters
and identify device pairs with a predictable duration. By constructing a
Markov trajectory entropy matrix, it is possible to assess the regularity of
each encounter pair. The matrix is obtained by estimating the probabilities
of transitions between different states (quantized duration values) and
then calculating the Markov entropies. The last phase is the selection of
collaborators (see Figure 2.3c). We establish entropy ranges and rank them
based on frequency and duration, selecting collaborators with consistent
availability and prioritize those with longer duration.

We utilize a large-scale crowdsensed dataset collected by a cellular oper-
ator in Shanghai over a one-week period as our primary data source. This
dataset contains real-world mobility traces and app usage patterns from
137 495 devices and 10 363 base stations, ensuring the data is representative
of human mobility and enables the study of collaboration opportunities in
a large context. The dataset provides coarse-grained information about
base stations in the metropolitan area and session details of user connec-
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tions, including device identifiers, session duration, data transferred, base
station IDs, and GPS coordinates. In our experiments, we focus on a 20
km2 area with the highest density of users and the 1000 users with the
highest amount of samples (≈ 1 000 000 D2D encounters). We separately
assessed the representativeness of the data, showing that distribution of
encounters has the same shape as other datasets that investigate device
collaboration [62]. We focus on collaborations lasting at least five min-
utes, which is the minimum time for a sensing task to be beneficial in a
collaboration between two devices [62], and exclude base stations and users
with measurement counts below the 90th percentile. Sessions are aligned
and matched between users at hourly intervals. Our approach is compared
against three baselines that specify a threshold condition α for selecting
collaborators, and evaluate the changes in collaborations for different values
of α. The first baseline considered is Familiarity, which is determined by
the frequency of device encounters, with α representing the number of
encounters. Higher familiarity corresponds when devices interact frequently.
Next baseline is Permanency, which measures the duration that devices stay
within proximity. The collaboration time required for a candidate device
is denoted as α. The last baseline, Magnitude, represents the α number of
devices needed to distribute a task.

The findings of our evaluation, summarized in Figure 2.4 and presented in
Publication II, illustrate that device encounters contain adequate regularity
to serve as a valuable source for identifying collaborations. Our method also
effectively detects collaborations characterised by prolonged duration and
predictability. The results include: (i) validation of the process of regularity
extraction from candidates, (ii) assessing the selection of collaborators, (iii)
comparing the results of COSINE with other selection approaches and (iv)
evaluating selection performance in different contexts. Entropy values are
used to measure regularity, with low entropy indicating consistent encounter
duration and high entropy indicating fluctuating encounter duration. Three
representative traces with different encounter frequencies are selected for
analysis, i.e. high, medium and low encounter frequencies. The results show
that regularity, represented by entropy values, can be used to characterise
collaboration candidates and their encounter duration.

We demonstrate that COSINE can identify collaborators with long and
stable periods of proximity. By selecting devices optimally, collaborations
of up to 22 minutes can be achieved. Other α values result in shorter dura-
tions of collaboration, despite a similar number of devices being available.
When comparing COSINE with other approaches, we observe that a similar
distribution of collaboration opportunities between all the approaches, indi-
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Figure 2.4: Selection of collaborators for the considered baselines for various
α-values. Figure previously published in Publication II [34].

cating consistency in collaboration principles over time. The variations in
collaboration opportunities based on different collaboration requirements
are illustrated in Figure 2.4, showing, for example that duration of col-
laboration opportunities increases with higher familiarity between devices.
However, as the familiarity requirement increases, the likelihood of finding
collaborators decreases. The Mean Absolute Deviation (MAD) for regularity
remained consistent at 5.66 across all duration values, while Familiarity
and Permanency showed higher variance (MAD = 13.74), making them
unreliable for identifying long-term collaborations. Finally, we demonstrate
the adaptability of COSINE to select collaborators in different context. The
results of COSINE are consistent even when considering specific locations
with oscillating mobility patterns, like a park.

We demonstrate how collaborator selection influences overall system
design, but also highlight how different contexts affect the characteristics of
available collaborators. This motivates us to further explore how human
mobility and contextual spatio-temporal differences impact collaboration
opportunities. We discuss this in Publication III, summarized in Section 2.3.
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2.3 Collaboration Stability

Collaboration is crucial in Pervasive Data Science for accomplishing tasks
specially in large-scale multi-device environments [59]. Stability plays a
vital role in collaboration as it ensures consistent execution of shared tasks
over time. Without stability, a collaborative application or service can
experience a degradation in performance or even a complete failure [101].

Currently, there is a limited understanding of the attributes that gov-
ern collaborative opportunities, making it challenging to establish the cir-
cumstances in which participatory applications are likely to succeed or
fail [41, 90]. Publication III solves this lack of understanding by quantifying
the collaborative stability of human mobility and characterising its impact
on the ability to find a reliable set of collaborators for multi-device com-
puting and networking scenarios. Our contribution includes (i) presenting
representative applications that benefit from collaboration stability, (ii) in-
troducing a general model for collaboration stability based on the variation
of collaboration opportunities, and (iii) empirically investigating the impact
of stability on networking applications. The evaluation is carried out using a
representative large-scale dataset of device-to-device encounters in everyday
contexts. Our evaluation reveals a strong correlation between collaboration
opportunities and the spatio-temporal context in which collaboration occurs.
Furthermore, our study highlights the significance of stability in collabora-
tive sensing applications within PDS, offering a way to significantly enhance
the selection of collaborators. For example, understanding the stability of
devices in a context allows efficient schedules to be set for task execution
based on their computational complexity and processing requirements.

Collaboration stability can be defined as the persistence of collaborative
or cooperative interaction patterns. The requirements for stability are
likely to depend on the spatio-temporal characteristics of a location [100] or
application. We define collaboration stability formally for an application A
as the function fA(d, t, s) where d is the number of collaborators (devices),
t is the temporal context for collaboration, and s is the spatial context.
Understanding the stability can be highly beneficial for a wide range of multi-
computing applications, such as contact tracing, fog computing, autonomous
vehicles, and crowd computing [70, 80].

We use the same large-scale dataset of one-week real-world mobility
traces that we used to study collaborator selection (refer to Section 2.2).
By using data collected from a mobile operator, it is possible to ensure that
the patterns of human mobility and interaction captured are representative
of real-world scenarios of multi-device applications. We focus our analysis
in the same 20 km2 area as in Publication II. This guarantees having a
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Figure 2.5: Availability of users for D2D collaborations over time in different
contexts. Figure adapted from the previously published Publication III [37].

large-scale representative amount encounters for analysis, i.e., ≈ 1 000 000
encounters, and cover six areas that differ in terms of user concentration
and land use, and are representative of locations where encounters are part
of everyday life routine [110]: Residential, Pubs, Park, Shopping, Train
Station and Financial.

Our experimental design is two-fold: (i) quantifying collaboration stabil-
ity and analysing the factors influencing it, and (ii) evaluating collaborator
selection using collaborative sensing as a case study. We first analyse col-
laboration stability in human mobility by monitoring continuous proximity
between devices, quantifying stability in different areas and parts of the
week. Daily patterns of users are used to compare stability in different areas
and evaluate its potential to be used for predicting the classification of an
area. Next, we compare two methods for selecting collaborators: familiar-
ity [62] and regularity (see Section 2.2). Both use a threshold parameter to
determine collaborators, applied either on encounter frequency or encounter
entropy, respectively.

The results of our experiments are summarised in Figure 2.5 and pre-
sented in Publication III and show that collaboration stability is highly
dependent on context with both the type of location and the time-of-day
affecting it. Understanding collaboration stability can help improve the
selection of collaborators. We first examine how the number of devices
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Table 2.2: Stability for different contexts, duration time (Dt) and number of
(Nd) available devices based on different daily routines (R). Table previously
published in Publication III [37].

R Category Time Financial Residential Shopping
(time window) range Dt Nd Dt Nd Dt Nd

1 Daytime 08:00-20:59 47 117 56 339 57 299
Nighttime 21:00-07:59 14 5 53 192 36 28

2 Rest (Early Morning) 01:00-08:59 18 16 51 170 32 35
Work (Morning-Afternoon) 09:00-16:59 53 161 56 342 57 267
Leisure (Afternoon-Evening) 17:00-00:59 27 21 57 322 55 250

3 Rest (Early Morning) 01:00-05:59 5 2 46 82 17 7
Rush hours (Morning) 06:00-07:59 34 18 59 297 59 56

Work (Morning) 08:00-11:59 55 166 54 336 57 190
Lunch break 12:00-14:59 55 161 57 393 56 344

Work (Afternoon) 15:00-17:59 49 112 57 279 57 323
Rush hours (Evening) 18:00-20:59 27 14 55 350 57 377
Leisure (Evening) 21:00-00:59 15 2 58 279 48 41

Total 33 66 55 282 49 185

available for collaboration varies across contexts, confirming the influence
of location and time on collaboration. This can be observed in Figure 2.5,
which shows that the number of devices is higher during weekdays than
weekends for all the areas, indicating a higher device usage and higher degree
of user activity. Collaboration groups during the weekend are more focused
on supporting short-term tasks, as the weekend has lower stability levels.
The availability of devices also depends on the time of day, indicating that
the stability of collaboration in a location is dynamic.

We assess the differences in the stability of collaboration in different
domains. We model stability based on mobility patterns that are indicative of
users’ routines [111]. Collaboration stability changes significantly depending
on the granularity of daily routines (see Table 2.2). More granular routines
provide information that is more consistent with the type of area and
human mobility. For example, as the second routine (Work) shows, the
Financial location has most activity during working hours (9:00-16:59).
However, a more detailed quantification (i.e. the third routine) shows that
the likelihood of having more and longer collaborations is higher during
the morning working hours (8:00-10:59). The most consistent stability of
collaboration occurs in the Residential area.

When assessing whether stability is a factor that can be used to predict
the context, and specifically the type of location, we observe that stability is
a characteristic of the location. The classification performance for predicting
the context using stability and location as input features in simple ML algo-
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rithms reaches 70% classification accuracy. This suggest that applications
used in specific contexts must align their collaboration patterns with the
context’s characteristic patterns to ensure successful collaboration. Stability
improves selection of collaborators in multi-device sensing and computing
tasks. As expected from the results of Publication II, the duration of collabo-
ration opportunities increases with the level of familiarity. Applications that
require high familiarity can only benefit from short collaborations. When
regularity is used, the duration that the collaborators are available is more
stable, meaning that selection using devices that have higher collaboration
stability can improve system stability.

Overall, these results highlight how the availability of devices varies over
time and location. The suitability of tasks for different locations also varies,
e.g., train stations are better suited for collaborative sensing rather than
collaborative computing due to the lack of support for stable groups that
have long duration. Our analysis highlights that understanding stability is
critical for making optimal decisions about scheduling collaborative tasks
and predicting their success or failure based on context.



Chapter 3

Low-Cost PDS Systems for Indoor
Monitoring

In Chapter 2, we demonstrated how PDS systems can take advantage
of the deployment of a massive amount of devices to collect and analyse
large amounts of diverse data and establish stable multi-device sensing
collaborations. Although these devices can provide valuable data, their use
is usually limited to the specific application for which they were originally
installed. Exploring the possibility of using these devices for additional
applications can bring benefits, such as gaining deeper understanding of the
environment, complementing existing systems and efficient use of energy.

This chapter demonstrates the potential and the benefits of re-purposing
low-cost sensing devices to provide an easy and cheap-to-deploy alternative
for real-world tasks and for augmenting existing technologies. We also discuss
the challenges associated with the costs of deploying low-cost sensors. The
presented use cases, which are part on the contributions of the Thesis, focus
on indoor monitoring, as humans tend to spend a significant amount of
their time in indoor environments [56]. The quality of indoor environments
is linked with human health, productivity, comfort, and quality of life in
general. It is therefore necessary to provide efficient sensing solutions that
can effectively support the monitoring of indoor environments.

When re-purposing low-cost sensors is their ease of implementation
and ability to offer valuable data for addressing emerging challenges. In
Publication IV, we show how existing low-cost environmental sensors can
be integrated into plants containers to provide information about the envi-
ronmental conditions of indoor areas. Plants are a common sight in indoor
spaces to decorate and improve the diversity of the environment that bring
several well-being benefits [10, 66] and are increasingly integrating sensors
for monitoring plant condition. Through comprehensive experiments, we

21
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demonstrate the potential of smart plants to estimate overall CO2 accumu-
lation, detect occupancy, and identify the usage of face masks. These are
representative examples of the applications that can be implemented by
re-purposing smart plant sensors (see Section 3.1).

Accuracy and precision are crucial factors to validate the reliability of
the measurements. Low-cost sensing devices are normally equipped with
sensors that compromise accuracy and precision for smaller size and lower
energy drain [83, 109]. These factors can be also significantly affected
by the sensor configuration and by how the sensor is physically installed.
In Publication V, we assesses the performance trade-offs and associated
limitations of low-resolution thermal array sensors with varying sensor
resolutions. These sensors are a cost-effective solution for detecting and
counting occupants in indoor environments. Compared to other monitoring
solutions, the key benefits are energy-efficiency and non-intrusiveness [7, 17,
92]. However, the performance of these sensors is significantly affected by
the camera’s resolution, frame rate, and field-of-view [103]. To address this,
we determine the minimum resolution and frame rate required for reliable
detection, and provide guidelines for determining optimal sensor resolution
and configuration in real-world deployments.

We conclude this chapter by exploring how existing sensing methods
can be used to implement new applications. We extend our analysis of
thermal sensors from occupancy monitoring to privacy-preservation to
privacy preserving applications. Publication VI demonstrates how thermal
imaging integrated into off-the-shelf consumer devices can be combined with
simple processing pipelines to offer a non-invasive approach to accurately
detect covert surveillance devices in a wide range of environments and
settings. We investigate factors such as, distance to other electrical objects,
environment, luminosity, camera type, and partial occlusion (see Section 3.3).
We show that thermal imaging can detect covert devices more easily and
efficiently than the conventional techniques in everyday contexts.

3.1 Smart Plants for Indoor Monitoring

Publication IV presents the idea of utilizing smart plants as a cost-effective
and easily deployable solution for monitoring indoor environments. Plants
are typically used in close proximity to people and are increasingly being
placed in containers that incorporate low-cost sensors that are used to
monitor plant growth and environmental conditions. In the publication,
we demonstrate how these sensors can serve as an alternative technology
for monitoring and enhancing indoor environments, eliminating the need
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Figure 3.1: Experimental Setup of Smart Plant Prototype. Previously
published in Publication IV [119].

for separate, often proprietary, sensors. The contribution comprises of two
parts: (i) showing how smart plants can be used to estimate overall CO2

accumulation, occupancy information, and whether people use protective
face masks or not, and (ii) establishing a research roadmap that identifies the
key challenges in employing smart plants to monitor indoor environments.

In general, the characteristics and variety of sensors change depending
on the context of use. Solutions for monitoring individual plants [78, 104]
integrate fewer sensors than solutions for monitoring greenhouses, gardens,
and grow rooms [58]. Miniaturisation and cost reduction in the production
of sensors can reduce the gap between these solutions and enable more
sensors to be integrated into plant containers for individual plants. We
build on this direction and consider a design that combines aspects of both
types of sensor devices integrating a portable weather station (Netatmo)
with a plastic plant container. The Netatmo station is equipped with
sensors that measure carbon dioxide levels, temperature, barometric pressure,
and relative humidity. The sensors were calibrated in accordance with
the manufacturer’s guidelines. The collected data is transmitted from
the weather station unit to cloud services through WiFi communication.
This connection allows access to the device configuration and download of
measurements from the cloud.

To assess the benefits of our design, we collected measurements with
different time granularity and in different experimental conditions to estimate
how well the sensors in the container capture variations in air quality.
Figure 3.1 illustrates the test environment, which corresponds to an area
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that is representative of a typical living or office space. The plant container
(pot) was placed in a fixed location. For the experiments we consider
ornamental plants that are easy to grow, care and are commonly placed
in indoor spaces: Coleus scutellarioides (common name: painted nettle)
and Hatiora salicornioides (common name: bottle cactus). The greenery
was planted in separate pots covering the sensors used for monitoring to
ensure a realistic monitoring context. The ground truth corresponds to
the mean value of CO2 when the indoor area is empty. The measurements
are then pre-processed using simple outlier removal. Feature extraction
involves statistical summaries of the measurements for different time window
sizes. These features are used for growth curve analysis and for modelling
face mask use and occupancy estimation. Between experiments,CO2 levels
are returned to ground truth levels. Samples were collected in different
experimental conditions, including varying the number of participants (0–2),
the time of data collection (3–h, 6–h, 1-day), the location of the participants
relative to the smart plant (80–cm, 380–cm), and the use of FFP2 face
masks (none wearing face mask, both wearing face mask, one wearing face
mask while the other does not).

The results of the experiments are detailed in Publication IV and include
(i) validating the characterisation of CO2 levels from the measurements,
(ii) assessing the robustness of our approach to different factors affecting
the sensing environment, (iii) analysing the changes in the measurements
over time and (iv) assessing the possibility of modelling face mask use and
occupation estimating using the characterised measurements.

We demonstrate a consistent and significant correlation between the
measurements obtained from the smart plant sensor and the dedicated
sensor. The collected measurements of accumulated variations of CO2 in
unoccupied spaces are not statistically different between the two devices.
This suggest that sensors placed in a plant container can effectively measure
indoor ambient conditions, comparable to using a separate sensor device. We
observe that distance has a significant effect on CO2 levels. Concentration
is higher when individuals are closer to the smart plant (see Figure 3.2).
This can be useful to make coarse-grained estimates of the distance where
people are located. The number of people in the room also has a statistically
significant effect on the CO2 measurements (see Figure 3.2), showing the
possibility of obtaining information about the number of occupants. In
addition, smart plants can provide insight into compliance with the require-
ments for the use of face masks by analysing the increase in CO2 levels
(slope) over time. The rate of CO2 accumulation can be used to identify
mask use, regardless of distance. We also analysed robustness to watering
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Figure 3.2: CO2 concentration curve for different experimental conditions.
Previously published in Publication IV [119].

as this can potentially affect humidity through water evaporation and plant
transpiration, and CO2 concentration. No significant differences between
CO2 concentrations were found, confirming that watering does not affect
the sensor measurements.

In the publication IV we also identify three phases in the growth curve
of CO2 concentration: 1) an exponential initial growth phase; 2) a near
linear transition period; and 3) a stationary phase where the concentration
is saturated (see Figure 3.2). When analysing the average concentration
and slope in each phase, it can be seen that face masks increase the growth
rate in the exponential phase, but do not necessarily result in significantly
higher concentrations in the saturation phase. The differences in the slope
of the CO2 concentrations in all phases and experimental conditions are
significant. Approximately 150 min are required to reduce the amount of
CO2 back to the unsaturated level, showing that the sensors of the smart
plant can also provide information to support proper ventilation in an area.

Finally, we demonstrate that smart plants can support coarse-grained
classification of face mask use and indoor occupancy estimation. For the
face mask classification, a model based only on CO2 concentration achieves
an average accuracy of 65%. A more informative feature model increases
the classification accuracy (≈ 70% when temperature measurements are
added). The main source of error is the case where mask use is mixed
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between occupants. When estimating indoor occupancy, the models achieve
higher results. The accuracy ranges from ≈ 85% with a model based only on
CO2 levels to ≈ 89% when incorporating both CO2 levels and temperature.
The highest misclassification rates occur when distinguishing between one
or two occupants. The inclusion of time window information does not
significantly affect the model performance across all time windows in both
cases. Overall, the classification results show that smart plants are able
to model different indoor scenarios and provide valuable insights into the
indoor context. However, the performance depends on the complexity of
the task and the characteristics of the space.

3.2 Thermal sensing for Occupancy Detection

Human occupancy data is crucial for building management systems as
it enables optimisation of energy usage and ensures a comfortable and
healthy indoor environment. Low-resolution thermal array sensors are a
promising solution for occupancy detection and counting. However, a major
challenge with low resolution sensors is their sensitivity to measurement
parameters, such as overall resolution, frame rate and camera field-of-
view, which significantly affect their performance [103]. Publication V
contributes with a systematic evaluation of low-resolution thermal array
sensors for occupancy detection, considering performance trade-offs and costs
such as privacy loss and deployment cost. We envision an increase in the
pervasiveness of low-resolution thermal sensor arrays as a potential solution
for supporting building management systems. Through our investigation, we
are able to determine the necessary minimum resolution and frame rate for
reliable detection. Additionally, we analyse the impact of different viewing
angles on performance. Furthermore, we provide guidelines for selecting the
most suitable sensor parameters based on deployment specifications, taking
into consideration various performance and cost criteria.

Our evaluation considers two datasets, an open source dataset of tripwire-
triggered thermal images (TIDOS [17]) and a proprietary dataset used
to validate the generality of the findings and to investigate the effect of
differences in camera field of view. Both datasets were collected using
Melexis MLX906401 thermal array sensors, which provides a resolution:
32× 24 pixels and two types of fields-of-view (FOV): standard (55◦ × 35◦)
and wide angle (110◦ × 75◦). The design of the sensing pipeline consists of
using the sensing units in different configurations to collect thermal radiation
measurements of the environment. The measurements were collected by
installing the thermal camera above the doorway of different occupation
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Figure 3.3: (a) Testing environment and (b) processing pipeline for occu-
pancy estimation. Previously published in Publication V [87].

scenarios. For TIDOS, the thermal camera was located at a height of
240 cm, the side of the larger viewing angle was parallel to the door frame
and the vision area was 249.9 cm× 151.34 cm. For the controlled testbed
measurements, the dimensions of the door frame are 205 cm×81 cm and the
vision area on both sides of the door was 313.1 cm×291.1 cm (see Figure 3.3a).
Ground truth was based on manual annotation of the measurements for both
datasets. We follow similar cleaning and pre-processing steps to state-of-the-
art occupancy counting systems using thermal array sensor data [15, 17].
The steps include: scene separation, deletion of long sequences with no
activity, background removal, image rescaling and Gaussian blurring. These
methods reduce the effects of noise and improve the robustness of occupancy
detection and counting. Occupancy detection and counting is estimated
using a blob detection algorithm, which involves detecting, tracking and
counting the flow of blobs by evaluating blob transitions in successive
frames. Feature extraction considers three parameters that impact on the
processing cost and the cost of the cameras themselves: image resolution,
frame rate and field-of-view. We use this information as input in to a
Tree-Structured Parzen Estimator (TPE) algorithm to find the combination
that maximises the accuracy of the occupancy count. This information
is used as input to identify lower bounds for resolution and frame rate to
establish a minimum point at which reliable detection is possible. The
sensing pipeline is illustrated in Figure 3.3b.

We next summarise the results of Publication V.When analysing the
impact of camera parameters, frame rates between 4 and 16 generally
perform very similarly and do not have a significant impact on the overall
performance of the occupancy counting algorithm. The counting accuracy
is consistently around 90% for resolutions higher than 2 × 2, which reduces
accuracy by around 10% (see Figure 3.4). Lower resolutions allow detecting
only one person at a time, but provide better privacy protection. Analysis
of viewing angle shows that for horizontal angle (see Figure 3.5b) a viewing
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the self-recorded dataset. Previously published in Publication V [87].

angle of 50◦ works optimally with resolutions of 2 × 2 and 4 × 4 whereas
viewing angles between 50◦ and 75◦ provide the best results when the
resolution is 8× 8. For the vertical angle (see Figure 3.5a) all resolutions
perform well when the angle is between 42◦ and 55◦ as long as the frame
rate is at least 4 FPS. The viewing angle of a camera depends on the door
area configuration and the height of the door frame. Optimal results are
achieved when the camera captures the immediate area beyond the door
frame, monitoring the physical entry and exit point. Higher resolutions
provide wider angles, while lower resolutions work if aligned with entry/exit.
Next, we evaluate the count error for different scenarios. A resolution of
8× 8 and frame rates equal to or higher than 4 frames per second provide
a lower counting error. Lower frame rates contribute to a higher number
of missing scenes. Our analysis indicates that scenes with a larger crowd
size are more prone to counting errors. A frame rate below 4 fps leads to
an increased number of missed scenes, likely due to the absence of rapid
blob transitions or the merging of multiple blobs during detection.

A trade-off analysis of thermal array sensors was conducted using various
real-life smart deployments. The optimal density of sensor deployment
depends on the application scenario [7, 75]. We consider two smart offices [71,
73] that include rooms for rooms, rest and study. Although the comparison
focused on smart offices, the results can be applied to residential buildings
as well. The recommended deployment for the first space (2431.52m2) to
continuously monitor occupancy and ensure continuous coverage would be
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486 sensors (currently 352 sensors), while for the second space (400m2)
the recommended deployment would be 80 sensors (currently 10 sensors).
Supplementing current deployments with thermal sensor arrays would cost
much less than using other sensor technologies. The difference would be up
to $116 580 in the first case and $465 600 in the second, depending on the
sensor technology. The results show that low-resolution sensors can provide
significant savings for occupancy detection applications, while helping to
protect occupant privacy.

Our vision is to enable environments with a mix of low and high resolution
sensor technologies so that they can complement each other to achieve
efficient monitoring in multiple contexts. Finally, we discuss factors that can
affect our findings. In our experiments, we focused on performance and cost
trade-offs without analysing the processing pipeline itself in detail. In general,
the performance is comparable to solutions using a more complex pipeline
or sensing method [15, 116]. In failure analysis, we manually reviewed the
causes of failures to gain insights into performance and limitations. For
example, close proximity between individuals, obstructing the floor view,
resulted in system malfunctions and occupant tracking loss. In terms of
computational performance, occupancy counting improves rapidly up to
1000 iterations but slows down afterwards. Using 4096 iterations ensures
accurate data collection without excessive resource consumption or noise.
Camera parameter experiments were compared between two datasets, with
the controlled testbed offering better control and a wider range of parameters.
Similar results were observed for resolution and viewing angle range in both
datasets.
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3.3 Thermal Sensing for Covert Device Detection

Growing concerns about covert surveillance devices highlight the need for
effective detection methods as users are increasingly interested in knowing
if they are being monitored [68, 94, 98]. Current detection methods include
manual inspection, reflectance detection, magnetic field analysis and network
traffic analysis [60, 88, 108]. These methods are vulnerable to the operational
status of the devices and require significant user involvement [108, 114]. The
use of thermal cameras to measure thermal emissions in the environment
has been studied [32, 33, 102] but the detection of covert surveillance devices
using this approach remains unexplored.

Publication VI contributes a re-purposing of thermal imaging technology
for discovering covert surveillance devices. This technology that can be easily
integrated into readily available consumer devices such as smartphones. The
contribution (i) demonstrates the effectiveness of our approach through
extensive and systematic evaluations that consider different types of covert
cameras and deployment contexts, including factors that may affect detection
performance and (ii) discusses how the simplicity and efficiency of using
thermal imaging to detect hidden surveillance devices can support existing
methods and improve the detection domain. Our approach uses thermal
imaging to create a map of the thermal emissions in the environment and
to uses simple processing techniques to identify the areas with thermal
emissions corresponding to potential covert surveillance devices. We use
thermal imaging due to (i) it is a portable solution that is increasingly
available on consumer devices and (ii) it offers the possibility of detecting
devices that have recently been used for surveillance [19, 27, 33].

The experimental design consist of (i) surveillance devices and (ii) a
sensing device. The first component corresponds to four commercial off-the-
shelf IP cameras and a smartphone. These devices are examples of consumer
devices that can be used or repurposed to be used as surveillance tool, and
cover representative features that are relevant for this purpose, including:
video resolution (1080p, 720p), audio transmission (enable, disable), motion
detection (enable, disable), power source (power cord, battery-powered) and
access mode (online: wireless, offline: local storage). Communication with
the devices is via WiFi making it possible monitoring the traffic over the
network. Camera vendor apps are used to access the configuration and local
storage of the devices. The second component corresponds to a FLIR One
Pro camera equipped with a USB-C port to connect to a mobile device.

We implement a custom app that interacts with the FLIR Mobile
API to extract the temperature matrix. Initially, the thermal camera is
positioned in front of the area of interest to be scanned. The camera



3.3 Thermal Sensing for Covert Device Detection 31

Covert 
surveillance 
devices 
identified

Identification

(Image rescaling,
Gaussian blur,

Background separation)

Pre-processing and cleaning

Blobs separation

Covert surveillance 
device

Appliance

Image retrieved from the 
covert surveillance device

Thermal Image
(Adaptive 
mean 

thresholding)

Thermal camera

Setup

No hidden 
device

Hidden 
device

Covert device

Figure 3.6: Thermal imaging targeting a covert surveillance device in a
living room and ambient light conditions, and the processing pipeline for
recognizing covert surveillance devices from thermal camera input. Previ-
ously published in Publication VI [120].

collects thermal emissions as a temperature matrix, which is transformed
into a thermal image. To eliminate thermal noise, a Gaussian blur filter
is applied, and the image is converted to grayscale. We employ the same
blob separation technique described in Section 3.2 to identify regions with
thermal radiation higher than certain threshold [27, 87]. These regions
possess characteristic features such as temperature, shape, and size, which
are indicative of the components and operating conditions of the devices
being detected. The average temperature of these regions is compared to
the ambient environment, and regions that significantly deviate from the
it are marked as potential surveillance devices. These annotations can be
utilised by other systems to enhance their detection of surveillance devices or
incorporated into intelligent models to monitor the environment or identify
suspicious heat signature. Figure 3.6 illustrates the sensing pipeline.

The purpose of the experiments is to assess the reliability of thermal
imaging in detecting surveillance devices in various conditions and against
common countermeasures. In the experiments, we cover the cameras with
manufactured goods representative of common household materials that
can be used to hide a camera, such as a cardboard box, a fabric shopping
bag, and a thermos bottle. A 0.5 cm diameter hole was drilled in the
cardboard and the shopping bag to expose the lens of the hidden camera.
The experiments involve analysing of the fingerprints in two settings: a
controlled testbed and in-the-wild. In the controlled testbed, we minimize
heat reflection and thermal dissipation noise from other sources. In the
real-world scenario, an office room is used, and furniture and other objects
are employed to hide the cameras. We take measurements at intervals of 10
seconds for a total duration of 2 minutes. This helps to reduce measurement
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variance and aligns with the interval between successive camera calibration
cycles [65]. During the intervals between measurements, the thermal camera
is kept at a controlled temperature between 2◦C to 4◦C for 2 minutes to
prevent potential errors due to camera overheating. Overall, we examine
three experimental designs to assess the effectiveness of thermal imaging
in covert camera detection and analyze variations in thermal fingerprints
across diverse contexts, including: (i) assessing performance under various
light conditions and distances, (ii) exploring different camera operating
configurations such as video resolution, audio transmission, and motion
detection, and (iii) testing different camera masking materials.

Publication VI demonstrates the validity of our approach to robust detec-
tion of covert surveillance devices. We perform experiments to characterise
the thermal fingerprint of the surveillance devices operating in different
modes and under different environmental conditions. The results show a
clear difference in the thermal fingerprint of the different cameras. The
devices with extra-functionalities (e.g., climate sensing, telephony, mobile
connectivity) emit higher thermal radiation due to the presence of more
internal components that generate heat. A similar behaviour occurs when
more features are enabled during operation. Video resolution has the largest
impact on temperature, with an increase of 2◦C to 6◦C when using Full
HD video resolution. This difference is statistically significant across all de-
vices. These results demonstrate that thermal sensing can not only capture
the thermal fingerprint of devices but also provide information about the
camera’s configuration mode, such as resolution, voice recording, or image
recognition.

When examining the effect of light and distance on the measurements,
we find that a short placement distance of the sensor is sufficient to obtain
accurate measurements (two metres for an object of ≈ 1 cm size). A shorter
distance increases the number of pixels that cover the object, making
identification easier. Thermal signatures are more intense in darkness, thus
detecting covert devices is more likely in the absence of ambient light. The
results of the office environment experiments show a statistically significant
reduction in the thermal fingerprint when different materials were used
to cover the camera (see Figure 3.7). The difference in visibility is also
significant across different materials. Materials such as cardboard and
fabric, which require the lens to be exposed, allow a small area of thermal
fingerprint to be visible. The thickness of the cover material simply reduces
the intensity of the thermal signature, bringing it closer to the ambient
environment, but the signature remains distinguishable for all cameras that
were tested. Thicker glass can absorb most of the thermal radiation if the
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camera is not directly in contact with the glass. In addition, filling a glass
container with water causes the thermal fingerprint to reappear due to
changes in the container’s reflective properties.

When assessing the effect of proximity to other sources of thermal
emissions (i.e., TV, microwave, wall mounted radiator and fluorescent tube
light), we observe that detection may require analysing differences in thermal
dissipation between the objects [32] or by detecting the thermal signature
as an extension of the heat source. In both cases, discovery is possible but
it may require the use of more advanced processing techniques.

Publication VI also compares our approach against magnetic field-based
detection and network traffic analysis. We consider the devices with the
highest and the lowest thermal fingerprints: Reolink and Samsung Galaxy
S6 (see Figure 3.7). Magnetic field-based detection struggles to discover
distant devices or those placed behind glass. Network analysis can identify
abnormal traffic conditions and device types but requires the device to be
on the local network, longer monitoring, and does not provide the source’s
location. Overall, our approach serves as a good example of a low-cost,
robust, and effective Pervasive Data Science system for detecting privacy
threats in indoor environments. It can also complement existing techniques.
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Chapter 4

PDS for Sustainable Development

In Chapters 2 and 3 we showed how Pervasive Data Science can be used to
collect measurements at large-scale across different contexts and how low-
cost devices and sensing methods can be re-purposed for innovative uses. In
this Chapter, we leverage these attributes of PDS to enable applications that
tackle environmental sustainability challenges. Sustainable development
broadly speaking aims at balancing the needs of the current and future
generations with the resources that are available [11].

Food loss and waste is one of the leading sustainability goal of the the
United Nations [82]. Efforts are being made to minimise the amount of
food that goes to waste at different stages of the food supply chain, such as
releasing communication campaigns about food waste [42] or implementing
regulations for responsible food management practices. However, still at
least 30% of the food is either lost or wasted globally [82, 96] Pervasive
computing and IoT technologies are being increasingly utilised in food
production and agriculture to enhance productivity and reduce waste across
the entire supply chain. In Publication VII, we use these technologies
to improve quality estimation, a key factor in reducing food waste and
identifying problems in the supply chain. We present an innovative method
for characterising various organic produce using contact-based reflective
green light sensing and demonstrate that our method is able to provide
insights into the internal and external quality factors of produce at different
stages of ripeness (see Section 4.1).

Pollution monitoring is crucial for achieving sustainable development.
Pollution is a multi-ecosystem problem that produce significant risks to
human health and the environment demanding urgent action for mitigation
and preservation [52, 99]. The challenges of pollution monitoring are related
to the limitations of current methods, which only provide information on
specific pollutants, have limited spatial and temporal resolution, and ignore

35
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Figure 4.1: Pervasive Data Science vision for improving environmental
pollution monitoring using coordinated unmanned vehicles equipped with
low-cost sensors.

interactions with other ecosystems. PDS can help to improve pollution mon-
itoring. For example, autonomous and unmanned vehicles equipped with
low-cost sensors can facilitate the collection of measurements of different
pollutants in different contexts and ecosystems, i.e. air, land, water (see
Figure 4.1). This allows better understanding the pollution processes and
the complex linkages within ecosystems. In this thesis, we focus on aerial
and marine pollution monitoring, as these are less-explored fields compared
to ground-based pollution monitoring [113]. Firstly, Publication VIII intro-
duces our approach for city-scale air quality monitoring using unmanned
aerial vehicles (UAVs). We show that UAVs-based pollution monitoring
provides information on the vertical distribution and potential dispersion
mechanisms of pollutants that can complement ground measurements and
cover larger areas (see Section 4.2). Secondly, in Publication IX, we present
our vision for large-scale pollution monitoring using coordinated groups
of underwater vehicles (UVs). Our experiments demonstrate the poten-
tial for collecting accurate information on the properties of pollutants at
high spatio-temporal granularity (see Section 4.3). Both publications also
highlight the requirements, challenges and enablers for implementing these
solutions.

Finally, Publication X contributes with a research vision for using deep
learning (DL) in marine environments. DL models can be integrated directly
into underwater vehicles or equipment carried by scuba divers, and can
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provide significant benefits in supporting real-time deep-sea operations,
particularly those involving computer vision. Our contribution encompasses
a comparative analysis of deep learning performance for classification tasks
in both surface and underwater environments. We also highlight the existing
research challenges and provide a roadmap for the use of deep learning in
aquatic environments (see Section 4.4).

4.1 Low-Cost Produce Quality Estimation

Food loss and waste is one leading sustainability goal of the the United
Nations [82]. Despite the efforts to reduce the amount of food that goes to
waste still at least 30% of the food is either lost or wasted globally [82, 96].
Quality estimation is essential in food production and agriculture to minimise
waste and identify supply chain issues. Existing solutions for produce quality
assessment, include visual inspection [115], automated image processing [57]
or different forms of spectral imaging [51, 106]. However, these methods are
difficult to adopt as they either support only specific stages of the supply
chain or are expensive and difficult to operate.

Publication VII contributes with an innovative low-cost approach to fresh
produce characterisation by repurposing inexpensive green-light sensors for
quality estimation. The practicality of our approach is (i) discussed by
showing its potential contribution at all stages of the supply chain and (ii)
validated by extensive empirical benchmarks to correctly distinguish organic
produce from non-organic items, establish unique fingerprints for different
produce, and estimate the quality or ripeness of produce. Our approach
works similarly to spectral imaging [106]. We focus only on the green light
wavelength because (i) it can penetrate the surface of organic products,
allowing variations in light reflection and absorption to be assessed, and (ii)
it involves simple components that are affordable, energy efficient, easy to
implement on low-cost microcontrollers, and widely available on commercial
off-the-shelf devices.

The experimental design includes a COTS smartwatch (Samsung Gear
S3 Frontier) that integrates two green LED lights and a photo-receptor,
which are used for sampling heart rate information. Green light is short
wavelength and effectively penetrates produce epicarp. The sensor collects
photoplethysmography (PPG) values corresponding to the light reflected by
an item exposed to the green light. The sensing sensing unit is placed in
contact with the object being measured and collect measurements for 90
seconds. These measurements are subsequently filtered to extract statistical
summaries (i.e., mean and standard deviation), which correspond to the
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Figure 4.2: Sensing pipeline for produce quality estimation. Previously
published in Publication VII [118].

object’s fingerprint. These fingerprints can be used independently to dis-
tinguish between various items or item classes, or they can serve as input
for ML/AI models to assess the quality of the produce [35]. The sensing
pipeline is summarised in Figure 4.2.

The produce considered for the experiments are samples that cover the
main categories of a structural classification of produce: berry (tomato,
banana, avocado, kiwi), hesperidium (lemon, mandarine), drupe (mango,
peach, plum), pome (pear, apple) and pepo (passion fruit, watermelon,
melon). The inorganic objects are representative of common waste: plastic
bottle (polyethylene terephthalate PET), a metal spoon (stainless steel), a
small ceramic plate (feldspar), a wooden toy box (solid walnut oak) and a
empty bottle of carbonated water (container glass). The controlled testbed
used for the measurements (see Figure 4.2) ensures that we can carefully
control the sensor position relative to the material, the luminosity level, the
noise caused by possible background reflections and the room temperature.

The experimental design comprises of three parts: (i) collection of five
sets of fresh produce and waste measurements to assess the performance
of the characterisation, (ii) a 15-day decomposition experiment to assess
the correlation between light reflectivity and changes in organic material
characteristics, and (iii) an 8-day follow-up decomposition experiment to
assess the generalisation of our approach to material recognition and produce
decomposition capture. We use the green light sensor to collect light
intensity values reported by the photo-receptor from produce and inorganic
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Figure 4.3: Characterization of different objects using green light sensing
(left). Mean absolute deviation of intensity measurements over a 15 days pe-
riod for different fruits (right). Previously published in Publication VII [118].

objects. For each material sample, the sensor takes measurements with 20
Hz frequency over a 90 second period. The information about the material
and experimental condition is manually annotated after sampling individual
material. Cleaning and pre-processing includes removing the first and last 15
seconds of the signal to avoid possible sources of external light and applying
moving median and 4th– order Chebyshev Type II filters to reduce signal
noise. The extracted features correspond to the descriptive statistics of the
pre-processed signal from each material and experimental condition. For
the modelling stage, we use three simple classifiers to model three quality
stages: ripe, overripe and decayed. We rely on simple models to minimise
overfitting and ensure the models can be easily integrated and operated on
energy constrained devices.

The results of the experiments are detailed in Publication VII. Firstly,
we demonstrate that the variations in light intensity among different types of
items can establish a unique fingerprint for each item, enabling the distinc-
tion between them. Characterisation results are presented in Figure 4.3 (left
part) and show that there are clear differences in the light values between the
objects. Manufactured objects tend to have a lower average light dispersion
than produce. In addition, epicarp characteristics influence light reflection
and absorption, with warmer epicarp colours having higher values compared
to cooler epicarp colours. These differences have been statistically validated
for their significance. Secondly, we evaluate the robustness of our approach
to variations of distance and luminosity. The results indicate that there
is no statistically significant effect on the light values for distances lower
that one centimetre regardless the luminosity conditions. This suggests
that the sensor should be in close proximity to the measured fruit while
being able to tolerate small gaps (up to one centimetre). This aspect is
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crucial in preventing manipulation of produce that may indirectly impact
its quality. Furthermore, we analyse the potential of green light sensing
to capture the quality of organic produce by evaluating the change in the
fingerprint of the objects over a 15-day period and validating the findings
with a 7-day follow-up experiment. Figure 4.3 (right part) shows that the
magnitude of deviations correlates with the changes in the produce over
time. Fruits experiencing significant alterations in epicarp color and firmness
exhibit higher deviations. The differences in measurements between the
two decomposition studies were not statistically significant, likely due to
differences in the initial state of the produce.

In addition, we examine the correlation between the degree of variation
and the thermal properties of produce used for modelling decomposition
risks within different stages of the supply chain. These properties include:
skin mass transfer coefficient (ks), the transpiration coefficient (kt) and
the respiratory heat generation rate (W ) [12, 38, 43]. The results indi-
cate a strong relationship between variations in green light and produce
decomposition. The final contribution of Publication VII demonstrates
that green light measurements can support coarse-grained classification of
produce into different stages of ripeness: ripe, overripe and decayed. The
generic model (i.e., light reflectivity only) achieves a classification accuracy
of ≈ 60%. Firmness of the produce is the most informative feature (≈ 74%
accuracy combining firmness and light intensity). By incorporating multiple
features the performance improves even further (≈ 83% accuracy combining
firmness, light intensity, epicarp colour and produce name). If only light
intensity values are available, then our approach is best suited for classifying
produce or distinguishing between organic and non-organic items rather
than on estimating quality. This demonstrates the general applicability
and effectiveness of our approach in complementing various stages of the
produce supply chain, which is crucial to reduce food loss and waste.

4.2 Air Pollution Monitoring

Reducing air pollution is one of the most important environmental sustain-
ability challenges as poor air quality has significant health and economic
impacts affecting millions of people worldwide [52]. Current solutions to
mitigate air pollution rely on using professional-grade measurement sta-
tions [72] and low-cost sensors [18]. However, these sensors capture only the
pollution distribution close to ground level without being able to provide
information of the vertical distribution of pollutants or to explain their
dispersion in the environment.



4.2 Air Pollution Monitoring 41

Publication VIII contributes a vision for city-scale air monitoring using
commercial off-the-shelf unmanned autonomous vehicles (UAVs) equipped
with portable air quality sensors. We demonstrate the benefits of the
proposed approach through benchmark measurements from industrial and
residential locations. We show that UAVs can provide the vertical profile of
pollutant concentration and dispersion at different locations. The results
highlight the importance of vertical modelling, showing the differences in
pollutant distributions both vertically and between locations, compared
to a background profile from a professional-grade measurement station.
Capturing these differences is essential for accurate modelling and estimation
of dispersion effects, providing new opportunities for atmospheric studies,
understanding of pollution dispersion patterns and supporting sustainable
development. To move from measurements collected by a remote operator
to fully autonomous measurements, advances in the functional stages of
the PDS architecture and sensing pipeline are needed to overcome the
limitations and challenges of current technologies. Key requirements and
challenges for autonomous monitoring are summarised in Tables 4.1 and 4.2.

The measurements are collected using a low-cost COTS UAV model X4S
equipped with an Aeromon BH-12 sensor, which measures airborne gaseous
compounds and particulate matter (PM) in the air. The PM sensor can de-
tect concentrations ranging from 0.01 µg/m3 to 1500mg/m3. Environmental
sensors measured relative humidity (RH%), temperature (T), and pressure
(P). The drone was manually controlled using the UAV’s command to have
a better control of the vertical sampling while maintaining line-of-sight
with the UAV. Pollution measurements are collected at 11 different heights,
with a 10-meter interval, starting from ground level to a height of 100
meters. Three particle sizes were measured: PM1.0, PM2.5, PM10. These
sizes refer to particles with diameters of at most 1.0 µm, 2.5 µm and 10.0 µm
respectively. Sampling was carried out in an industrial and a residential
area in southern Finland to evaluate changes in pollutant concentrations in
locations with different characteristics. The gold standard measurements
correspond to professional-grade measurement stations located close to the
sampling areas. Cleaning and pre-processing included removing atypical
values and synchronising the samples collected at the different locations
with the gold standard measurements. The extracted features correspond
to the representative statistics (i.e., mean, standard deviation and range).
This values were used as input in a linear regression model that describes
the changes in pollutant concentration at different altitudes and locations.

The results of the experiments of Publication VIII show the benefits
of UAVs-based Air Pollution Monitoring. We demonstrate that our ap-
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Table 4.1: Summary of requirements for environmental pollution monitoring
using UAVs and AUVs. Adapted from Publications VIII and IX.

Requirement Environment Emerging Challenges

Air

Comprehensive air quality monitoring requires
sensors to sample particulate, gaseous and
other pollutants. 3D-maps help to understand
the pollution situation, gain insights and coor-
dinate UAVs to seal leaks and locate emissions.
5G and 6G technologies enable accurate loca-
tion with minimal power consumption.

Pollution Detection,
Identification and
Localization

Underwater

Pollutants come in different forms.and inter-
actions between contaminants affect their for-
mation. Detailed information is necessary for
effective cleaning. Large-scale monitoring re-
quires affordable AUVs with limited capabili-
ties to coordinate surface-based cleaning.

Air

Coordination enables horizontal and vertical
sampling strategies. Sampling locations for
UAVs should complement ground-based solu-
tions, citizen sensors, and monitoring stations.
Real-time coordination is needed for efficient
sampling plans and maximise data quality.Coordination

Underwater

Coordination allows covering large areas. Col-
laborative AUV deployments enable to capture
the full range of pollutants at different depths.
Coordination is essential for communication
range and collaborative sensing.

Air

UAVs need lightweight sensors for efficient mon-
itoring in large areas. Sensor placement must
be optimised to prevent air flows from affect-
ing pollution measurements. New computing
units should enable real-time monitoring, i.e.,
processing, data analysis and coordination.Lightweight Sensor

and Hardware
Designs

Underwater

Interfaces for remote operators are required
for specifying bounds and constrains to AUVs
and coordinate sampling and monitoring areas.
AUVs need to be fault-tolerant to operate for
long periods without human intervention and
require reliable casing solutions.

proach provides comprehensive information on the vertical distributions
of particulate matter for the two sampling locations (refer to Figure 4.4).
As expected, higher concentrations are observed at ground level in the
residential area. The vertical column at 1.0 µg/m3 in the figure represents
negligible concentrations. In contrast, the industrial location displays con-
siderably higher concentrations compared to the residential area. While the
concentrations at ground level are comparable, the plume resulting from
industrial processes substantially elevates particle concentrations at higher
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Table 4.2: Research challenges and emerging topics for pollution moni-
toring in different environments (E) using aerial (A) and underwater (U)
autonomous vehicles. Adapted from Publications VIII and IX.

Type E Key Research Challenges Emerging Challenges

A
Improve the accuracy of sensors
using calibration

Opportunistic calibration inte-
grating precise sampling and
compact sensors

Sensing

U

Methods for categorizing pol-
lution sources and identifying
multiple pollutants. Robust-
ness under diverse conditions.

Model the inner change of ma-
terials exposed to the environ-
ment.

A
Innovative approaches for en-
ergy management and optimis-
ing sampling

Collaborative processing and
computing augmentation

Power and
Operational
Time

U

Novel energy management and
power solutions, i.e., wireless
charging stations, underwater
energy harvesting

Resource augmentation and en-
ergy efficiency using collabora-
tive processing and offloading

A
Ultra low-latency data transfer,
and precise localization

Integrate UAVs with edge and
5G infrastructure

Networking

U

High band short-range technolo-
gies and robust long-range tech-
nologies capable of interacting
with existing infrastructure

Robustness of technologies
against water characteristics,
e.g., water flows, temperature,
and salinity.

A Accurate and robust 3D local-
ization

Localization using emerging
technologies, e.g., mmWave

Localization

U
Positioning schemes for 3D ab-
solute localization, robust rela-
tive positioning.

Hybrid localization that offers
relative and absolute position-
ing

A Models to analyze air pollu-
tants in diverse contexts

Advanced models for collecting
air quality measurements

Situational
awareness

U
High-resolution and energy-
efficient situational awareness
techniques

Coordinated data collection
that supports scientific sam-
pling

altitudes. The distribution of particles varies with size and altitude. Larger
particles have the highest concentration at higher altitudes due to hygro-
scopic growth. As altitude increases, pollutants either fall to the ground
or disperse in the environment. The differences in vertical distribution are
significant and depend on the sampling location. This demonstrates the
importance of employing a UAV-based solution for capturing pollutants
at different altitudes to monitor the vertical column, and understand the
influencing factors and the mechanisms that control dispersion in different
environments, as well as to support health risks assessment.
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Figure 4.4: Concentration of particulate matters (PMs) at different air
column altitude within different environmental profiles. Previously published
in Publication VIII [74].

The power of UAVs in this application is on capturing a three-dimensional
view of the distribution of pollutants. We showed the significant effect of
location and altitude on PM concentrations, and the no interaction effect of
variations in pollution distribution between the two locations and different
altitudes. Statistically significant differences occur from 70 meters onward,
highlighting the importance of monitoring both the horizontal and vertical
dimensions in order to accurately measure the full extent of pollutants as
emissions can vary significantly at different altitude.

When comparing PM2.5 measurements collected using the UAV with the
gold standard, differences between the reference stations primarily result
from variations in the deployment location. In Figure 4.4, the reference
lines for the residential location demonstrate a close agreement with the
experimental values. Conversely, measurements taken at the industrial
site show higher concentrations compared to those at the reference station.
Concentration levels correlate with the degree of pollutants. The divergence
from the reference values suggests that the elevated pollutant concentrations
are localised, with the pollutants dispersing across a wider area.

4.3 Marine Pollution Monitoring

Marine pollution is a growing global challenge that has adverse effects on
the well-being of marine ecosystems, weather patterns, and even human
health [28, 99]. To effectively mitigate underwater pollution, it is crucial
to implement appropriate measures and clean-up operations, which in
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turn require reliable information on the extend of marine pollutants [28].
Obtaining information about the extent of marine pollutants is currently
challenging due to existing measurement solutions are laborious costly,
restricted to specific pollutants, and offer limited spatio-temporal resolution.
Similarly, sensing solutions are poorly suited for underwater sensing due to
being sensitive to environmental characteristics [48, 107].

Publication IX presents a research vision for large-scale autonomous
marine pollution monitoring using coordinated groups of autonomous under-
water vehicles (AUVs) to assess the extent and characteristics of pollutants
in aquatic environments and green light sensing to classify marine debris.
The feasibility of our vision is addressed by evaluating two key research chal-
lenges through small-scale controlled experiments: (i) pollutant detection
and classification and (ii) distributed and cooperative processing. Controlled
experiments and evaluation focus on preparing the PDS systems to operate
in marine ecosystem to gather detailed information on pollutants at high
spatial and temporal resolution. Similar as in Section 4.2, the Publication
presents the key requirements challenges, and enablers for enabling our
approach (see Tables 4.1 and 4.2).

Our experimental setup for debris classification relies on the same COTS
device used in Section 4.1 (green light LED combined with a photoreceptor)
We use the device to collect light intensity measurements reflected by
different materials (paperboard, high-density polyethylene, polyethylene
terephthalate, aluminium, feldspar and solid walnut oak) under different
sensing medium (air cf. water) and luminosity conditions (ambient cf.
darkness). The objects are placed individually into a glass container covered
with a non-reflective (black) lid. The smartwatch is taped outside the
container, directly below the measured object (see Figure 4.5a). Sensing
medium emulates a water-proof casing on the surface (empty container)
and in underwater environment (container filled with water). Luminosity
conditions emulate the case where the container is unobstructed and ambient
light penetrates into the water (ambient) and when the sensor is in direct
contact with the object (darkness). The light intensity measurements are
sampled at a 100 Hz frequency over a 90-second period, and annotated for
each material and experimental condition. Cleaning and pre-processing are
performed using the same methods as in Section 4.1, i.e., extracting the more
stable part of the signal and applying noise filters that preserve the temporal
characteristics of the measurements. The extracted features correspond to
the average reflected light of the pre-processed signal, which serve as input
for classification models [35, 118]. We focus on simple classifiers to ensure
that they are as energy efficient as possible to operate in AUVs.
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Figure 4.5: Controlled testbed for underwater material sensing and collabo-
rative processing. Adapted from Publication IX [36].

The experimental setup to evaluate collaborative processing underwater
consists of four LG Nexus 5 smartphones placed inside sealed glass containers
mounted on a wooden structure equidistant from each other (see Figure 4.5b).
The arrangement forms a micro-cloud in which devices communicate via
a WiFi interface. We implement an Android prototype for collaborative
object recognition that runs on the devices using a master-slave approach.
The master device randomly assigns computing tasks to other devices
(workers). The master receives a sequential video feed and sends frames
to the workers in a round-robin fashion. Workers send results back to the
master upon task completion. The sensing pipeline involves an experimental
object recognition task using a video feed. It simulates the computational
requirements for recognising debris underwater. The video feed consists of 50
images (224× 224 resolution) from ImageNet. The task is performed on the
surface and underwater with the devices in the glass containers. The gold
standard corresponds to the task performed on the surface without encase.
Each device in the micro-cloud has installed a pre-trained and quantized
convolutional neural network model (MobileNet) for object recognition. As
the evaluation metrics we use task completion and success rate.

The results obtained from Publication IX for underwater material sens-
ing confirm that light reflectivity measurements of different materials have
significant variation to support debris identification in all tested conditions.
Publication IX also demonstrates that optical sensing can provide a coarse-
grained classification of debris by using light intensity measurements to
build simple classifiers that can be deployed on AUVs at low energy cost.
The performance analysis shows that changes in the sensing medium have
minimal effect compared to changes in luminosity. In fact, the best classifi-
cation performance, just over 80%, is achieved when measurements come
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from similar luminosity environments. This suggest that classification of
marine pollutants using optical sensing is feasible as long as the models are
trained with sufficiently similar samples to the AUV operating environment.

For the underwater distributed processing, Publication IX confirms that
processing time of the micro-cloud is affected by the number of participant
devices. Increasing the number of workers reduces processing time, which is
important for achieving higher video rates and image resolutions. Underwa-
ter micro-clouds have the potential to support tasks that require real-time
analysis of camera images. Experimental results demonstrate that even with
just one worker device, a processing frequency of 30 fps can be achieved.
When assessing the effect of encasing or submersion on computing perfor-
mance, we observe a marginal increase in the response time, i.e., ≈ 5ms for
the encasing and ≈ 20 for underwater. The task success rate, percentage of
frames that the workers return to the master, is 100% when the devices are
above the surface. As expected, success rate decreases when the micro-cloud
is underwater. When assessing the effect of distance between devices, we
observed that success rate drastically drops to 0% beyond 10 cm. The result
suggests the need to improve the networking layer with efficient short-range
communication solutions for underwater operations.

4.4 Deep Learning in Marine Environments

Pervasive Data Science systems provide valuable possibilities for real-time
exploration, monitoring, and modelling of environments. In the domain
of marine science and oceanography, machine learning (ML) techniques
are increasingly employed to analyse underwater video footage [46, 53],
playing a central role in various emerging underwater applications aimed
at sustainable development [69]. The utilization of vision-based data holds
significant potential for leveraging deep learning (DL) in supporting deep
sea applications. Nevertheless, this also imposes limitations on the platforms
that handle such data and poses challenges in ensuring accurate operation
of the techniques [112] and operating ML algorithms in-situ [53].

Publication X demonstrates the potential of DL to enrich existing tasks
in aquatic environments. We envision integrating DL directly as part of
underwater operations to offer timely access to data and insights about the
underwater environment. We use underwater marine litter detection as case
study, which allows to show the impact of using embedded DL to increase
the scale of marine pollution monitoring by supporting automated in-situ
analysis. PDS DL-based systems can bring significant benefits to underwater
computing, supporting automated analysis of data in underwater monitoring
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and providing a mechanism to support the operation of underwater vehicles
or other infrastructure integrating computing capabilities, such as seabed
sensor networks and buoys.

The potential of underwater DL extends to several domains that require
real-time analysis of underwater data, such as audio or video signals, col-
lected in different ways, e.g. by underwater vehicles (AUVs or ROVs), divers
or marine fauna. Embedding new technologies into underwater vehicles is
becoming increasing possible, but current attempts mainly rely on using
hardware build to work in the surface. Deploying computing resources
in marine environments is highly challenging due to the variation in the
operation conditions, e.g., increment in depth derives on higher pressure
and water density, requiring robust casings and balancing the inside-outside
pressure. Summarising the current state of submersible hardware allows to
understand current limitations of existing deployments and the opportunities
of using underwater vehicles prepared to efficiently run DL models.

Current deep-sea monitoring rely on static cable connected underwater
stations or observatories, which are fixed and communicate with central
ground control stations through cables that provide real-time communication
and power supply. Relying on a mobile platform for communication is
highly costly and offer limited computing capability. AUVs and ROVs are
currently popular for underwater explorations, however their processing
and battery autonomy is highly limited. More advanced platforms that
integrate computing features for running DL are extremely costly to be
consider for large-scale low-cost COTS solutions. Hybrid Technologies is
a solution to powerful processing power through the cloud, but this works
best close to shore and calm areas close to a surface-based hub or gateway.
Combining underwater operations with surface-based cloud is also prone to
transmission errors and limits real-time operation to the maximum depth
at which devices can operate.

Integrating deep learning directly into underwater platforms has the
potential to significantly enhance underwater investigations by providing real-
time access to data and insights of the aquatic environment. Publication X
contributes to this by demonstrating the potential of DL to enrich pollution
detection in underwater environments. The field experiments for underwater
marine litter detection enclose a Raspberry Pi 3 microcomputer with camera
module and power bank placed in a sealed container (see Figure 4.6a) and
transported during a 50 minute dive. The DL model was implemented
using TensorFlow Lite, which is the standard framework for multi-platform
deployment of DL models and big data applications. A GPU infrastructure
was utilised for training and obtaining the quantized model for object
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Figure 4.6: In-the-wild test for litter classification with (a) Deployed micro-
sphere for real-time marine litter detection, (b) CPU temperature (Celsius),
(c) CPU usage (percentage) and (d) and RAM usage (MB). Previously
published in Publication X [84].

recognition. For the experiments we use Trash-ICRA19 [40] annotated trash
dataset. We extended annotations to include four different litter categories:
plastic, wood, metal, and other. We collected the ground truth by repeating
the same experimental setup on the surface. The device is then set up to
perform continuous object recognition at 15 FPS captured by the camera.
The modelling is based on the MobileNetv2 [89] DL architecture with Single-
Shot Detection (SSD), which has lightweight structure and good object
recognition performance. We used intersection of unions (IoU) bounding
boxes, CPU temperature and usage and RAM usage as evaluation metrics,
as they allow us to assess the performance of the model and the effect of
the environment on hardware performance.

Publication X provides the insights from the analysis of litter classifi-
cation and hardware performance during in-the-wild tests. Classification
results show a median classification accuracy of 87% for all debris categories.
The materials with the highest accuracy are wood (97%) and metal (95%).
Performance and recall drop to 56% and 60% respectively for images con-
taining multiple litter objects. This demonstrates the potential of using
DL to detect (and classify) marine litter in real-time and to automate
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underwater tasks. Analysis of the detection successes and failures highlights
the challenges of extending these systems to operate robustly in the un-
derwater environment. For example, individual categories of marine debris
are generally easy to detect at close range. At longer distances, light and
water conditions reduce overall accuracy. Complex backgrounds, or where
debris are covered by sediment, add to the detection complexity. As men-
tioned above, the model has problems detecting multiple objects or object
categories. In the evaluation of hardware performance, CPU temperature
shows an early spike during the underwater operation (see Figure 4.6b),
which responds to the lack of air outlet inside the container. The colder
water starts to offer cooling for the container when dive submerges deeper.
CPU and RAM usage results show a similar performance underwater and
in the surface (see Figures 4.6c and 4.6d). These results suggest that even
low-cost micro-controllers could be integrated with readily available AUVs
and ROVs to develop cost-effective underwater computing platforms that
support the execution of deep learning models. However, deploying these
systems at large requires further work, e.g., novel casing designs as well as
cooling and energy management features to avoid interfering the underwa-
ter vehicles operation. The results of the experiments demonstrated the
potential of deploying underwater vehicles integrated with DL-models to
automate different tasks. However, it is necessary to overcome important
challenges for helping to scale up DL operation for underwater monitoring,
such as operating in extreme and changing conditions and differing water
temperatures. The key research challenges are summarised in Table 4.3.
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Table 4.3: Research challenges and emerging topics for enabling deep learning
deployment. Adapted from Publication X.

Type Key Research Challenges Emerging Challenges

Sensing Migration of existing sensors for
underwater operations

New portable, lightweight and
energy-efficient sensing solutions

Processing
resources

Augmenting resources with ad-
ditional infrastructure

Advanced augmentation with
distributed and collaborative
processing

Fault tolerance
and operational
time

Recovery and replacement of
components without extraction
from underwater

Multi-modal techniques to pro-
vide robust recovery and contin-
uous operations

Communication
and cooperation

Adoption of different communi-
cation technologies, e.g., electro-
magnetic, acoustic and optical

Emerging mature interfaces and
integration with new paradigms,
e.g., 5G and 6G

Resource inten-
sive processing

Design of better encasing to
improve thermal absorption of
heavy processing

Emerging approaches to reduce
thermal overhead based on dis-
tributed processing

Advance
autonomy

New autonomous functionalities
that reduce human intervention,
e.g., back to home routines

Total autonomy for underwater
solutions, e.g., self-healing, opti-
misation and configuration

Open SDKs and
extendable APIs

Open firmware to build a wider
ecosystems of solutions

Adoption of a common and
reusable platform

Data diversity
and massive
datasets

Adoption of static monitoring so-
lutions in different aquatic envi-
ronments

Emerging integration of dy-
namic monitoring and data col-
lection with underwater vehicles
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Chapter 5

Discussion and Conclusion

In this thesis, we have study Pervasive Data Science as an emerging paradigm
that can generate new knowledge across domains from data collected by
multi-device platforms. We have addressed important challenges and limita-
tions in PDS to improve its adoption as an independent research domain.
Specifically, we have provided insights into the processes that govern the
way data is generated, offered methods to improve and understand data
collection from multiple devices, demonstrated how new applications can
be enabled by re-purposing existing sensors, and provided examples of end-
user applications in the field of sustainable development. In the following,
we present some insights into the limitations and future potential of the
contributions, as well as conclude the thesis.

5.1 Discussion and Future Work

Data Fusion and analysis of performance: Publication I provided
insights into the processes that govern how crowdsensing produces measure-
ments. The amount and quality of measurements is essential for providing
the best insights, and it is also essential for enabling accurate AI models.
Normally one app only provides one type of measurements and optimally
measurements from multiple apps need to be combined. Combining datasets,
however, can be challenging as the intersection of the datasets is often very
small. If the data is limited to the part that is common, this reduces
the benefits gained from crowdsensing and can lead to unbalanced and
biased samples. Methods for data fusion specifically designed for large-scale
datasets, which evaluate the balance between data size and data quality,
are necessary. Beyond data fusion, it is also necessary to better understand
factors that affect data production processes. Publication I examined the
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critical factors of energy and latency in relation to user perception and
demonstrated how they affect data availability through retention. Publica-
tion III, in turn, studied how spatio-temporal context and device availability
affect data availability and Publication II demonstrated how mobile system
design can be harnessed to improve data quality. It is essential to investigate
also other factors that are linked to performance, such as diverse usage
patterns, mobile interactions [76] and human mobility [100], and to develop
further methods that help to improve the quality and availability of data.

Applications and Stakeholders: We have demonstrated several new
applications for pervasive data science, yet naturally there are many other
ones that our work enables. Long and stable collaborations, as enabled by
Publication II, enables collaboration scenarios involving resource-intensive
sensors and hardware, asynchronous machine learning, edge intelligence, as
well as small-scale data centers powered by smartphones. In Publication VI,
we contributed with an innovative method for detecting covert surveillance
devices using thermal sensing. This could be adopted in markets such as
Airbnb and Uber where there is often a lack of trust and a high risk of being
surreptitiously monitored. The results of Publications VII, VIII, and IX
similarly can be harnessed for many purposes and adopted by stakeholders
ranging from industry to local authorities and end-users.

Other Contexts: As is common, our experiments largely considered
settings that offer sufficient degree of control. Increasing the sample sizes
and conducting further data collections can further improve the insights that
can be gathered. For example, educational campaigns on food loss could
be used to collect further data to support the methods in Publication VII.
Publication II examines stable collaborations in an individual location, but
it would be possible to extend the work also in scenarios where people
are mobile as mobility patterns have been shown to have a high degree of
regularity [29]. Further research should also explore stability in different
types of locations and time spans, considering different contexts and factors
such as cultural differences, mobility variations, urban design and size of
geographic area. Similarly, Publication VI studied surveillance cameras
that can be easily purchased in any market without restrictions and the
evaluation could be expanded to devices that are specifically designed for
covert surveillance, such as cameras embedded in pens or USB sticks, and to
additional test environments, such as home-type environments. Nevertheless,
our work has offered new ways to harness pervasive data science to deliver
innovative end-user applications.

Accuracy and privacy of low-cost sensors: Low-cost sensors are de-
signed to be easy to deploy and consume low power, making them accessible



5.1 Discussion and Future Work 55

to a wide range of applications. In Section 3.2 we evaluate the performance
trade-offs associated with low-cost sensors and examine how accuracy is
affected by sensor configuration. However, it is important to note that
the accuracy of low-cost sensors can be susceptible to drift bias, which
limits their effectiveness in different contexts and environments. It is crucial
to conduct studies aimed at reducing environmental drift and minimising
context dependency. By addressing these issues, it may be possible to ensure
the reliable and robust operation of sensors across different contexts and
environments, which is important to enable our vision of multi-ecosystem
pollution monitoring presented in Sections 4.2 and 4.3. Low-cost sensors
have the potential to collect valuable data that can complement existing
applications and address new challenges. However, this feature also raises
concerns about the unauthorised collection of data from users or the pos-
sibility of combining this data with existing data and revealing sensitive
information. Further research on context-aware privacy of sensor data and
data aggregation, such as differential privacy or federated learning, should
be conducted to ensure privacy in multi-sensor environments.

Large-Scale Adoption: The applications presented in this thesis were
intended as proof-of-concept demonstrators that showcase the potential
for PDS. Before these can be brought to large-scale use, there are further
challenges that need to be addressed. For example, Publication IX demon-
strated the potential of optical sensing to detect and identify underwater
pollution, but further work is needed to improve the fabrication of materials
that are suitable for underwater use and for system designs that can avoid
disturbing and damaging underwater ecosystems. Similarly, the use of UAVs
at city scale, as envisioned in Publication VIII, requires the incorporation of
mechanisms to ensure reliable operation, such as coordination and collision
avoidance, and regulations on the operation of UAVs that prevent carrying
excessive equipment or to invade personal privacy.

Complementary Solutions: In many cases, the best results are obtained
by combining multiple different solutions, each of which has their own
benefits and disadvantages. For example, Publication VII studied the use
of low-cost optical sensing for estimating produce quality, but it could be
integrated with other methods, such as computer vision or even multispectral
imaging, to offer more accurate information about produce quality. Similarly,
the smart plant solution described in Publication IV, has been designed
to be compatible with infrastructure-based sensors, such as thermal array
sensors used in Publication V.

Advancing sustainable development: In Chapter 4 we presented food
waste reduction and pollution monitoring as representative examples of
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how sustainable development applications can benefit from PDS. We envi-
sion having low-cost sensors and sensing methods that can be seamlessly
integrated into all stages of a process, ensuring traceability and providing
information on the operational context. For example, integrating our qual-
ity assessment solution (see Section 4.1) throughout the food supply chain
to assess the efficiency of the storage and transport system. Beyond the
limitations on data collection discussed above, we have identified certain
limitations in multi-device platforms that need to be overcome to enable
effective data collection within and between environments. For example, pol-
lution monitoring requires the use of robust communication technologies and
coordination algorithms to enable covering larger areas and ensure efficient
sampling. Communication and coordination should be extended to allow
interaction between UAVs and AUVs, enabling multi-ecosystem pollution
monitoring. These issues warrant further research and development.

Enabling AI underwater: Section 4.4 presents an evaluation of deep
learning (DL) models in aquatic environments, focusing on image classifica-
tion tasks due to their relevance in this context. However, it is important
to note that other models, such as Large Language Models (LLMs) or Long
Short Term Memory (LSTM), can also be explored to gain complementary
insights into the energy and performance costs associated with different
types of underwater tasks. In our analysis, we conducted experiments
using a diver to transport the computing unit underwater. However, future
research can extend this work by using Autonomous Underwater Vehicles
(AUVs) to assess the readiness and robustness of hardware and software
to host DL models, including assessing interference from other operations,
computational overload and variations in energy consumption. By consid-
ering these advances, we can gain a deeper understanding of the potential
applications of DL in underwater environments and improve the overall
efficiency and effectiveness of these models in real-world scenarios.

5.2 Summary and Conclusion

Pervasive Data Science (PDS) is an emerging area that integrates the
Internet of Things (IoT), Pervasive Computing, and Data Science to address
everyday needs in multi-device environments. While the individual subfields
of PDS have been highly active in recent years, progress and widespread
adoption of PDS itself has been hampered by challenges that affect the
collection, analysis and use of sensor data produced by smart devices. In this
thesis, we have contributed insights, methods, new applications, and system
designs for fuelling the uptake of PDS and to produce new applications.



5.2 Summary and Conclusion 57

Firstly, the quality of sensor data has been improved by illustrating the
power of data fusion in understanding the relationships between different
factors collected by individual datasets, and the limitations of current data
fusion methods in handling large-scale datasets. The impact of network
latency and energy consumption on mobile application retention was quanti-
fied using two large-scale crowdsensed datasets. Opportunistic collaborative
sensing and computing in multi-device environments was analysed, show-
ing the correlation between user mobility and collaboration opportunities,
and introducing a novel collaborator selection method based on Markov
trajectory entropy. Secondly, the potential of re-purposing low-cost sensors
has been studied by considering them as affordable and easy-to-deploy
solutions for data collection in various applications. In this thesis we studies
the use of smart plants integrated with sensors for indoor environmental
monitoring, the use of thermal array sensors for occupancy sensing, and
the use of thermal imaging to detect covert surveillance devices to protect
the privacy of indoor users. Finally, this thesis has demonstrated the po-
tential of Pervasive Data Science to support environmental sustainability
and sustainable development. We introduced PDS solutions for product
quality assessment along the supply chain, air pollution monitoring using
aerial drones, and large-scale marine pollution monitoring using underwater
vehicles. The performance and challenges of using deep learning models in
new environments, i.e. aquatic environments for image classification, have
also been illustrated.

Taken together, the contributions of this thesis help pave the way for
further adoption of PDS. Naturally, there are many other challenges that
also need addressing, such as integration of suitable AI models, privacy, and
security. Nevertheless, this thesis can serve as catalyst for further research
in PDS and helps to demonstrate the challenges and benefits of PDS, while
also providing some solutions to some of its key challenges.
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Vicent Calatayud, Amalia Muñoz, Isabella Annesi-Maesano, Fed-
erico Sebastiani, Alessandro Alivernini, Vincenzo Varriale, and Flavio
Menghini. Plants for Sustainable Improvement of Indoor Air Quality.
Trends in Plant Science, 23(6):507–512, 2018.

[11] Robert Cassen. Our Common Future: Report of the World Commis-
sion on Environment and Development. International Affairs, 64(1):
126, 1987.

[12] Khe Van Chau, Robert Romero, Direlle Baird, and Jerome Gaffney.
Transpiration Coefficients of Fruits and Vegetables in Refrigerated
Storage. ASHRAE Report 370-RP, 1987.

[13] Andrew Chen. Number of Apps Available in Leading App Stores as
of 3rd Quarter 2018. https://andrewchen.co/new-data-shows-why-
losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-
much-better. [Accessed on 2019-02-14].

[14] Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen
Zhang. AR-miner: Mining Informative Reviews for Developers from
Mobile App Marketplace. In Proceedings of the ACM International
Conference on Software Engineering, pages 767–778. ACM, 2014.

[15] Veena Chidurala and Xinrong Li. Occupancy Estimation Using Ther-
mal Imaging Sensors and Machine Learning Algorithms. IEEE Sensors
Journal, 21(6):8627–8638, 2021.

https://www.braze.com/resources/articles/essential-mobile-app-metrics-formulas
https://www.braze.com/resources/articles/essential-mobile-app-metrics-formulas
https://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better
https://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better
https://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better


References 61

[16] Niel Andre Cloete, Reza Malekian, and Lakshmi Nair. Design of
Smart Sensors for Real-Time Water Quality Monitoring. IEEE Access,
4:3975–3990, 2016.

[17] Mertcan Cokbas, Prakash Ishwar, and Janusz Konrad. Low-Resolution
Overhead Thermal Tripwire For Occupancy Estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 88–89. CVF/IEEE, 2020.

[18] Francesco Concas, Julien Mineraud, Eemil Lagerspetz, Samu Varjonen,
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